
IMPLEMENTATION OF VPSA TECHNOLOGY TO SEPARATE CO₂ FROM FLUE GASES USING A METAL-ORGANIC FRAMEWORK

Haidar Al-Awaad ^a, Guy De Weireld ^a

^a Thermodynamics & Mathematical Physics Unit, Faculty of Engineering, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium, <u>guy.deweireld@umons.ac.be</u>

The CO₂ emissions from large stationary sources like power plants and energy-intensive industries (cement, chemicals, steel,...) have been identified as major sources of global warming and climate change. Roughly, over 60 % of global warming effects are relevant to carbon dioxide emissions to the atmosphere [1]. In this study, an adsorption process (VPSA-vacuum pressure swing adsorption) using electricity from renewable sources was proposed and implemented for the reduction of CO₂ industrial emissions. The VPSA technology seems to effectively separate CO₂ from flue gases with relatively low energy consumption, flexible operation conditions, low operation cost, and low environmental impacts compared to absorption/regeneration technology using amine (3800-4000 kJ/kgCO₂). Al-MOF MIL-160 [A1 (OH)(O₂C-C₄H₂O-CO₂)] was selected as an adsorbent because it exhibited: good working capacity, good selectivity to capture CO_2 from post-combustion conditions, green synthesis, water stability, and the possibility of scaling-up and shaping [2]. Hence, a two-stage (the first one to increase the concentration, the second one for purification) VPSA process composed of two columns in each stage was designed. A five-step Skarstrom cycle including a pressure equalization step in each stage was employed, and the impacts of various operation parameters were studied. The overall process performance of the two-stage VPSA process resulted in a CO₂ purity of 95.01% and a CO₂ recovery of 90.04% with CO₂ productivity of 0.1165 gCO₂/g ads.h. The total energy consumptions were 993 kJ/kgCO₂. The simulation results are well conformed with the U.S. Department of Energy (DOE) requirements in terms of product purity and recovery.

References :

- [1] A. Yamasaki, J. Chem. Eng. Jpn, 36(4), 361-375 (2003).
- [2] D. Damasceno et. al., Journal of Physical Chemistry, 121(48), 26822–26832 (2017).